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A procedure is developed to simulate the spatial and temporal distribution of traffic flows on a
simplified highway network for home-to-work commuter trips. The procedure is based on a discrete/
continuous econometric framework in which travelers’ choices of route and departure time are
modeled. Equilibrium traffic flows are determined using the estimated econometric models in a
classic supply/demand equilibrium. The potential usefulness of the approach is demonstrated
through a number of simulation runs in which equilibrium traffic flows are determined under
network capacity constraints and alternate signal timing strategies.

INTRODUCTION

Urban traffic congestion has consistently ranked
as one of the most perplexing problems facing trans-
portation analysts. At the heart of the problem is the
dominance of single-occupant vehicle travel and the
enormous social, economic and environmental costs
associated with the construction of additional highway
system capacity. Since single-occupant vehicle domi-
nance and high construction costs are likely to persist
well into the future, congestion can only be viewed as
a problem of ever growing importance.

Researchers have long recognized that the analysis
of urban traffic congestion must be predicated upon
theoretically consistent models of travelers’ response
to traffic congestion. Traditionally, such modeling has
focused solely on travelers’ choice of route whereas
other possible responses to congestion, such as
changes in departure time and travel speed, were
virtually ignored due, in large part, to the additional
modeling complexity that their consideration war-
ranted. Consequently, travelers’ route choice was
modeled with equilibrium assignment techniques, but
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the modeling approach was inherently static due to
the fact that travelers’ time-variant decisions of de-
parture time and travel speed were not addressed. In
recognition of the deficiencies of traditional modeling
approaches, an entire body of literature has evolved
to dispense with the static equilibrium assumptions of
the past (BEN-AKIVA™). One branch of this literature
has sought to incorporate traveler choice dynamics in
an econometric framework by permitting the choice
of departure times from a set of discrete time inter-
vals (CoSLETT,'”! ABKOWITZ,"! HENDRICKSON and
PLANK!). Related research has considered departure
time within the context of rather rigorous definitions
of user equilibrium (HENDRICKSON and Kocur,!'®
HENDRICKSON, NAGIN and PLANK,!'® FARGIER,!®!
DE PALMA et al.'"), and extensions of this approach,
to include the choice of route, have provided fruitful
results (MAHMASSANI and HERMAN"®). More classic
econometric-based approaches have also enjoyed some
popularity and have provided a rich behavioral
basis for departure-time/route-choice modeling (BEN-
AKIVA, DE PALMA and KANAROGLOU,'® ABU-EISHEH
and MANNERING,'? MANNERING!??). Finally, exten-
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sive theoretical and empirical investigations of the
dynamics of the thought process by which commuters
arrive at a satisfactory choice of route and departure
time have been successfully undertaken (MAHMAS-
SANI and CHANG,'*2 CHANG and MAHMASSANL,"
MAHMASSANI and ToNG?Y).

Overall, research on the varying aspects of traveler
choices and dynamic equilibrium, as listed above, can
best be characterized as slowly evolving, with the
speed of evolution inhibited by the inherent complex-
ity of the problem. The intent of this paper is to
continue the advance of the field, but to do so by
taking a theoretical and empirical approach that de-
parts somewhat from the evolutionary course of the
literature. Three key components of the current paper
distinguish it from previous efforts: 1) departure time
is viewed as continuous instead of discrete, 2) travelers
are assumed to have some control over vehicle speed
and consequently trip travel time, and 3) spatial and
temporal equilibrium is defined in a classic economic
sense and operationalized through the constraints im-
posed by the discrete/continuous econometric struc-
ture. While the development and demonstration of an
operational dynamic equilibrium model are the pri-
mary objectives of the paper, the paper’s departure
from some of the accepted conventions of the field has
the important side effect of encouraging researchers
to rethink fundamental assumptions and to consider
new aspects and dimensions of the dynamic equilib-
rium problem. This side effect may ultimately serve
as the most significant contribution of this paper.

The paper begins with an overview of the empirical
setting that will form the basis of subsequent model
estimation and simulation experiments. This is fol-
lowed by a presentation of the demand model struc-
ture, a discussion of specification issues, and estima-
tion results. Equilibrium definitions are then specified
and an appropriate equilibrium algorithm is outlined.
The dynamic equilibrium model is then demonstrated
through numerous simulation experiments and, fi-
nally, a summary of findings is made and appropriate
conclusions are drawn.

1. EMPIRICAL SETTING

To ENABLE the reader to better understand the econ-
ometric specification issues that will be addressed in
the next section of this paper, we depart from the
traditional theory-first format and provide a descrip-
tion of the empirical setting that will serve as the basis
for model estimation and subsequent simulation ex-
periments. To study travelers’ choice of route and
time-varying choices of departure time and travel
speed, a survey of 151 morning commuters was con-
ducted in State College, Pennsylvania in the spring of

1986. The survey was designed to collect a wide variety
of data on the traveler’s most recent trip to work
including route choice, make, model and vintage of
vehicle used, vehicle occupancy, departure time, ar-
rival time, work start time, and preferred arrival time
at work. In addition, general socioeconomic informa-
tion was collected including income, age, sex, marital
status, occupation and number of children.

The approach of the survey was to concentrate on
a single origin-destination pair. The selected origin
was a large residential development (Toftrees) located
in suburban State College, and the destination was
the highly concentrated central business district of
State College and the adjacent campus of the Penn-
sylvania State University. As illustrated in Figure 1,
three distinct and diverse routes connect the origin-
destination pair; Atherton Street (a four-lane major
arterial), Fox Hollow Road (a two-lane rural road),
and the Route 322 by-pass (a four-lane expressway
with a one-lane exit ramp). It is important to note
that since the precise location of home and work was
collected in the traveler survey, the actual point-to-
point distances from work-to-home, on each of the
three routes, can be computed and will vary from
traveler to traveler. A summary of traveler point-to-
point distances and basic route characteristics is given
in Table 1.

To supplement the data collected in the commuter
survey, traffic-related data was gathered, via field
observations, including traffic flow rates, peak hour
volumes and traffic signal characteristics (phasings,
cycle lengths, green times). The combination of the
commuter survey and field observations provides a
fairly rich and comprehensive data source and one
that is well suited to the study of commuter responses
to congestion.

2. DEMAND MODEL STRUCTURE AND
SPECIFICATION ISSUES

WE BEGIN model development by restricting com-
muter options, in response to traffic congestion, to
changing departure time and route. Thus, the options
of changing mode or canceling the work trip entirely,
are excluded. Since State College has abbreviated
transit service and work trips are nondiscretionary in
nature, the focus on only route and departure time
choice is not unreasonable.

In modeling travelers’ route and departure time
choice, a discrete/continuous econometric structure is
developed with the choice of route being discrete and
the choice of departure time being continuous. In
specifying such a structure, the utility provided by
alternate routes is first defined as,

ij = OIETTkj + 3OPCOkJ (1)
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Fig. 1. Map of the study area.

TABLE I
Characteristics of Network Routes

taneous flow), length of route, and the number of
traffic signals on the route and their cycle lengths and

Characteristic Arterial Horal Expressway effective green times. Vehicle operating costs will be
a function of traffic flow at the time of departure and

Number of lanes (total, both 4 2 4¢ . . . .
directions) the fuel efficiency characteristics of the vehicle used.
Hourly capacity of the most 1600 933 467 Given this simple linear utility function, an esti-
restrictive section (vph) mable discrete probabilistic route choice model can be
Average point to point dis- 4.92 4.45 7.01 specified by adding a disturbance term to Equation 1
tance from origin to destina-  (0.86)  (0.81) (087) to account for unobserved influences on the route

tion in miles (standard
deviation in parentheses)
Average travel speed in miles 26.9 24.5 37.9

choice process (e.g., traveler preferences regarding
scenery, pedestrian traffic, and so on) such that the

per hour (standard deviation  (7.55)  (7.24) (10.0) total utility (observed and unobserved) is U,; = V,; +
in parentheses) ¢. If the unobserved influences, ¢’s, are assumed to be
A"(eiag‘:i“ ngl tf“::f’ In minutes (121%7) (131:?) (1215656) generalized extreme value distributed, the standard
standard deviation in . . . . . . 27]
parentheses) multinomial logit form results (MCFADDENZ"),
Ratio of highest observed 1.77 2.33 1.88

travel time to free flow
travel time

¢Two lanes at exit.

where V,; is the observable utility provided to traveler
k on route j, ETT,; is the expected travel time for
traveler k on route j, OPCO,; is the expected vehicle
operating costs incurred by traveler k on route j, and
a and 8 are estimable parameters. Note that expected
travel time will be a function of route capacity, pre-
vailing traffic flow at the time of departure (instan-

Pu = exp[Vu]/Zs exp[Vy] (2)

where Py, is the probability that traveler k& will select
route i from the set of available route choices J. Given
this probabilistic form, the coefficients in the utility
function (Equation 1) can be readily estimated by
standard maximum likelihood methods.

For travelers’ continuous choice of departure
time, the following identity forms the basis of model
estimation,

DT, = WST, — SD, — TT, — WAT,. (3)
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Where DT, is the home-to-work departure time of
traveler k, WST, is the work start time for travelers
with fixed work start times and is the preferred arrival
time for travelers without fixed work start times, SD,
is the schedule delay, defined as the amount of time
between scheduled work start time and actual arrival
time (schedule delay is, by definition, zero for travelers
without fixed work start times), TT} is the trip travel
time, and WAT), is the work access time (i.e., walking
time from parking location to work). Although trav-
elers could be viewed as having some influence over
them, the terms WST, and WAT, are assumed to be
exogenous to this study, as the data required to accu-
rately model these factors would be extremely difficult
to collect. This leaves travel time and schedule delay
as the departure time determination factors that are
assumed controllable by travelers.

Route travel time has traditionally been assumed to
be beyond travelers’ control. However, this assump-
tion is only valid under extremely congested condi-
tions as travelers have, in general, some control over
their travel time because of their ability to alter driv-
ing speeds, risk taking behavior, and reaction times.
For empirical convenience, a model of average speed
is specified and, since distance is known, average
travel time can be readily computed from this model.
The speed model is,

SPEEDk] = O'ESij + [1 - qkj/cj]ﬁsESk + Vij (4)

where SPEED,; is the average origin to destination
speed of traveler k on route j, ESPy; is the expected
speed of traveler k on route j and is a function of route
capacity, traffic flow at departure time (instantaneous
flow), and the number of traffic signals on the route
and their cycle lengths and effective green times,
qxj/c;, is the volume to capacity ratio of route j at the
traveler’s departure time, SES, is a vector of the
socioeconomic characteristics of traveler k that affect
driving speed, ,; is a disturbance term, and ¢ and ¢
are estimable parameters. The term 1 — gx;/c; in this
equation reflects the assertion that as congestion in-
creases, travelers will have less control over their own
speeds. It should be mentioned that various nonlinear
forms of the restriction that increasing congestion
imposes on travelers’ choice of speed were empirically
tested, but were not found to be statistically superior
to the form of Equation 4.

The final component needed to estimate traveler
departure time, as determined by Equation 3, is sched-
ule delay. Schedule delay is defined by the linear
equation,

Sij =x + \//ESPkJ + FSEDk + QPREFk + Nkj (5)

where SD,; is the schedule delay, which is defined only
for travelers with fixed work start times, ESP,; is the

expected speed as defined in Equation 4, SED, is a
vector of socioeconomic characteristics influencing
travelers’ choice of schedule delay, PREF, is traveler
k’s preferred schedule delay assuming no traffic
congestion, 7, is a disturbance term, and =, ¢, T and
Q are estimable parameters.

The coefficients of Equations 4 and 5 can be esti-
mated by standard regression techniques and those of
Equation 2 by maximum likelihood, but two critical
specification issues must be addressed. First, it has
been mentioned that expected travel time and vehicle
operating costs (in Equation 2), expected speed (in
Equations 4 and 5), and the g;/c; term (in Equation
5), are dependent on instantaneous traffic flow which
is itself a function of travelers’ departure time. If
instantaneous traffic flows for observed traveler de-
parture times were to be used, a potential for selectiv-
ity bias in model estimation would exist, since travel-
ers are observed departing at only one time and it is
not known what their behavior, with respect to route,
speed, and schedule delay, would have been had they
departed at some other time and faced different in-
stantaneous traffic flows. Intuitively, there is reason
to believe that their behavior may be different due to
the nature of the departure time selection process. For
example, commuters that choose to depart early will
typically be risk averse travelers who may accept long
schedule delays and have preferences for driving
speeds and routes which differ from those of late
departers.

To avert potential estimation bias resulting from
this source, the instantaneous flow values used in the
estimation of Equations 2, 4 and 5 (the precise use of
which will be discussed in detail in the next section)
are instrumented by regressing observed instanta-
neous traffic flows (defined as the traffic flow over a
five minute time interval at the time of departure),
for each of the three available routes, against all
travelers’ work start times (for those travelers with
fixed work start times) and preferred arrival times
(for those travelers without fixed work start times).
The use of regression-predicted flow values, which are
based on exogenous work start and arrival times,
follows the popular indirect method of instrumental
variable selectivity bias correction (MANNERING and
HeNSHER2Y). This type of selectivity bias correction
has been shown to be theoretically and empir-
ically valid by a number of studies (see DUBIN and
McFADDEN"?).

The second specification issue is a more classic
discrete/continuous selectivity bias problem. As with
departure time, we only observe travelers making one
route choice and, since it is unrealistic to assume that
the speed and schedule delay behavior of travelers
using the expressway, arterial, and rural road will be
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identical, a selectivity bias will arise. For example, it
might be expected that observed users of the express-
way will tend to be faster drivers, in general, since the
expressway route offers them the potential to drive at
much higher speeds. Expressway drivers may also
have an inherent preference for smaller schedule de-
lays which may result from the lower variance in travel
time (i.e., fewer traffic signals) offered by the express-
way route choice. Given this, on the basis of observed
route users, a censored sample exists since, for exam-
ple, it is not clear as to how fast an expressway user
would have driven, or what his/her schedule delay
would have been, had he/she selected the arterial or
rural route. If an appropriate econometric correction
is not used, estimation of Equations 4 and 5 will be
biased because users observed taking specific routes
constitute a nonrandom sample that is formed from a
systematic route selection process.

Although numerous correction techniques are avail-
able to avert potential estimation bias from this source
(DUBIN and MCFADDEN,!*? MANNERING and WIN-
STON,” MANNERING and HENSHER?¥), the expected
value method is the most suitable in this case. In
applying this correction method, the expected speed
(ESPy;) variable used in Equations 4 and 5 is replaced
by its expected value defined as,

ESPk = ZJ ijESij (6)

where P,; is the probability of traveler k selecting
route j as defined by Equation 2 and ESP, is the
expected speed as defined for Equations 4 and 5.

3. ESTIMATION RESULTS

GIVEN THE general econometric structure outlined in
the preceding section, attention can now be directed
to the specifics of model estimation. For estimation
convenience, instantaneous flow is defined as a five-
minute volume expanded to an equivalent hourly vol-
ume. With this definition of flow, we can precisely
define the expected travel time term used in the route
choice model (Equation 2) and the expected speed
term used in the speed and schedule delay choice
models (Equations 4 and 5). Expected travel time
consists of two components: travel time on open sec-
tions of road and travel time resulting from intersec-
tion delay. The open road travel time is estimated
using the Bureau of Public Roads (BPR) performance
function (see BRANSTON®)) and intersection delay is
estimated by assuming uniform arrivals and depar-
tures. This results in the expected travel time term,

3
ETTkj = jo[l + f(ﬁ) :|dkj +

Cj

ZMkj r?,,j

2Cm(1 - ij) (7)

where ETT),; is the expected travel time of traveler k
on route j in minutes, t;, is the free flow travel time at
the prevailing speed limit, for route j, in minutes per
mile, gi; is the instantaneous five minute flow ex-
panded to an equivalent hourly flow, faced by traveler
k on route j, in vehicles per hour, ¢; is the open road
capacity of route j in vehicles per hour, d;; is the point-
to-point origin to destination distance faced by trav-
eler k on route j, { and ¢ are route specific parame-
ters that are a function of route speed and capacity
(Branston®®), M, is the set of traffic signals faced by
traveler k on route j, r,; is the effective red time of
signal m on route j per cycle in minutes, C,, is the
cycle length of signal m in minutes, and p,,; is the
traffic intensity of signal m defined as the average
arrival rate (q;) divided by the saturation flow rate of
the approach of route j, in vehicles per hour. Note
that the traffic signal delay portion of this equation
(i.e. the second term), as specified, is valid only when
approach capacity exceeds arrivals. The standard
modification of this term is used when arrivals exceed
approach capacity (MANNERING and KILARESKI®?®),
The values for expected speed used in the estimation
of Equations 4 and 5 are obtained directly from Equa-
tion 7 by using distance (dy;) and converting values to
units of miles per hour.

Given the above definition of expected travel time
along with vehicle operating cost (which is known
from the price of fuel and the make, model and vintage
of vehicle used to make the trip), the route choice
model (Equation 2) can be readily estimated with
instrumented values of instantaneous flow, g, used
to avert possible departure time selectivity bias. The
results of this estimation are given in Table II. The
table indicates that both coefficient estimates are cor-
rectly signed and highly significant, statistically. The
magnitudes of the coefficients are also reasonable, as
the marginal rate of substitution indicates that the
value of commuter time is $6.32 per vehicle hour or,
with an average sample vehicle occupancy of 1.1, $5.75
per person-hour. It is also interesting to consider the
route-specific elasticities of cost and time. Average
elasticities, computed by sample enumeration, are pre-
sented in Table III. This table shows that expressway

TABLE II
Route Choice Coefficient Estimates (Corrected for Departure Time
Selectivity Bias)

Variable Coefficient t-Statistic
Expected travel time (in minutes) —-0.667 —6.803
Vehicle operating costs (in dollars) —6.328 —2.733
Number of observations 151
Log likelihood at zero —165.89
Log likelihood at convergence —101.36
Percent correctly predicted 74.17
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TABLE III
Route Elasticities
Route Elasticities with

Route Type Respect to:
Costs Time
Arterial -1.17 -5.71
Rural road —0.476 -1.72
Expressway -2.07 —6.04
TABLE IV
Speed Model (in MPH) Corrected for Route and Departure Time
Selectivity Bias
Variable Coefficient t-Statistic

Expected speed (in mph) 0.642 6.86
Income (in thousands of dollars 0.202 2.55

per year)
Number of vehicle passengers 4.036 2.29
Number of observations 151
R-squared 0.319

choice probabilities are most sensitive to cost and time
changes while the rural road is least sensitive. This
finding is largely the result of the longer distance that
most travelers experience by using the expressway
route alternative (see Table I).

The speed model (with the dependent variable being
the average travel speed, in miles per hour, as specified
in Equation 4) is estimated by ordinary least squares
with corrections for route and departure time selectiv-
ity as previously discussed. Estimation results are
given in Table IV. Individual coefficient estimates are
all of plausible sign and statistically significant. The
positive income coefficient suggests that higher in-
come drivers tend to drive faster. This finding may be
reflecting the fact that higher income travelers tend
to drive higher performance vehicles and/or may tend
to exhibit more aggressive driving behavior. The pos-
itive vehicle occupancy coefficient is likely capturing
the tendency of travelers to increase driving speed in
an attempt to compensate for the increased trip dis-
tance often encountered in multiple occupancy vehicle
travel. Finally, the R-squared value of 0.319 is quite
satisfactory when one considers the amount of vari-
ance in data of this type.

The estimation results of the schedule delay model
(defined only for travelers with fixed work start times
and with the dependent variable being the amount of
time between scheduled work start time and actual
arrival time, in minutes), with corrections for route
and departure time selectivity bias, are presented in
Table V. As found in previous research efforts (CHANG
and MAHMASSANI®), travelers’ preferred schedule de-
lay (which is defined as the schedule delay assuming
no traffic congestion) plays a dominant role in the

TABLE V

Schedule Delay Model (in Minutes) Corrected for Route and
Departure Time Selectivity Bias

Variable Coefficient t-Statistic

Constant 12.104 1.05
Expected speed (in MPH) —0.384 -1.7
Income (in thousands of —0.108 -1.93

dollars per year)
Age (in years) 0.118 1.69
Preferred schedule delay 0.821 7.75

(in minutes)
Number of observations 90
R-squared 0.492

model. The positive coefficient associated with the age
variable indicates that older people tend to be more
conservative and have higher schedule delays. The
opposite effect is true of income, with wealthier trav-
elers reducing their schedule delay. This finding may
reflect less significance being placed on on-time
arrivals by higher income travelers (i.e., higher job
security) and/or more risk seeking behavioral tend-
encies. The expected speed coefficient suggests that
as congestion increases (and expected speed declines)
schedule delays will increase. This is a reasonable
finding since intuitively we expect travelers to increase
schedule delays to account for the increased variabil-
ity in travel times associated with congested, low
expected-speed conditions. This finding is also con-
sistent with the earlier work of Mahmassani and
Tong®" and others. Again, the overall R-squared is
quite adequate considering the amount of variance
inherent in the schedule delay data.

4. EQUILIBRIUM DEFINITIONS

GIVEN THE estimated demand models, as specified in
Equations 2, 4 and 5, attention can now be directed
toward operationalizing these models in a dynamic
traffic equilibrium framework. The traditional ap-
proach to equilibrium on highway networks divorces
itself from classic supply/demand equilibrium by using
performance functions (such as the BPR function
discussed earlier), which define a physical relationship
between traffic flow and speed, as opposed to one that
is some function of individual decision making
(SHEFFI®®). This paper departs from the performance
function concept in that key variables (travel speed
and schedule delay) are assumed to be an outgrowth
of individual choices. As will be shown, this perform-
ance function departure permits the problem to be
viewed as a supply/demand equilibrium in the classic
economic sense.

To begin formalizing our approach, we adopt the
definition of dynamic equilibrium as the spatial
(route) and temporal distribution of traffic flow that
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ensures that all travelers between all origins and des-
tinations achieve utility maximizing behavior. This
definition is consistent with the general notion of
economic equilibrium as discussed in various sources
(ARROW and HAHNP!). In this study, with a single
origin and destination pair, it is assumed that the
number of morning work trips between the origin and
destination is known and, as previously assumed for
model estimation, that commuters’ work start times
(for fixed-time employees) and preferred arrival times
(for travelers without fixed work starting times) are
also known and exogenous to the equilibrium process.
Given a series of discrete time intervals of a specified
length (e.g., the five minute instantaneous flow inter-
vals used in demand model estimation), equilibrium
exists when the spatial and temporal distribution of
traffic flows satisfy,

D,(Z, R, F, VIW) =f, Vt, . ®)

Where ¢ is the index of discrete time intervals of some
specified length, j is an index of alternative routes
between the origin and destination, Z is a matrix of
traveler attributes, R is a matrix of route attributes
that are not flow dependent, F is a matrix of instan-
taneous traffic flows for all routes and time intervals,
V is a matrix of traveler-used vehicle attributes, W is
a matrix of traveler’s work-start and preferred-arrival
times, D,;(.) is the conditional aggregate demand for
route j in time interval ¢ with prevailing traffic flows
F (as specified by previously estimated Equations 2, 4
and 5), and f,; is the instantaneous flow on route Jin
time interval ¢.

The equilibrium problem is one of finding flow
values that ensure that Equation 8 is satisfied and
that the summation of flows over all routes and time
intervals is equal to the total number of trips made
between the origin and destination. Intuitively, this
equates to solving for the matrix of instantaneous
flows (F) that produces consistency between traveler
departure times and desired route, speed, and schedule
delay choices. It also is important to note that the
flows for any given t’ and j’ are dependent on the
flows of all other ¢t # ¢’ and j # j’, as suggested by
Equation 8. This implies a cross elasticity between
different time periods. The existence of such a cross
elasticity is consistent with recent developments in
the dynamic equilibrium literature (BEN-AKIVA, CYNA
and DE PALMA")).

With standard theorems relating to general equilib-
rium models, equilibrium flows satisfying Equation 8
can be shown to exist (ARROW and HAHN®)). Further,
with additional restrictions on travelers’ route choice
utility functions, equilibrium flows satisfying Equa-
tion 8 can be shown to be unique. Specifically, these
restrictions relate to substitution and income effects.

For proof of uniqueness it is necessary to assume that
flows affect demand only through substitution effects
and not income effects. While this assumption is
potentially problematic in some cases, such as solving
for equilibrium prices in durable goods markets, it is
quite reasonable in the context of work trip choices
which do not involve extensive capital investment.
Unfortunately, while proof of existence and unique-
ness is a straightforward adaptation of existing eco-
nomic equilibrium proofs for the case of a single origin
and destination, extensions of the modeling approach
developed in this paper to multiple origins and desti-
nations cannot be proven to be unique without un-
realistic behavioral restrictions, due to the fact that
the sole dependence between instantaneous route
flows and specific origin-destination demand no
longer exists. For additional details on general equi-
librium models of this type see Arrow and Hahn,®
BERKOVEC," and MANNERING and WINSTON.[2!

5. EQUILIBRIUM ALGORITHM

FOR THE determination of instantaneous traffic flow,
as indicated in Equation 8, discrete time intervals of
a five minute duration are used so as to be consistent
with the estimated demand models which have ex-
planatory variables based on five minute instanta-
neous flows. Recall that since demand is now being
aggregated, over the single origin-destination net-
work, flow must be considered endogenous to the
process, unlike the case of model estimation in which
the effect of an individual traveler’s choice on instan-
taneous flow could be assumed to be so small, that
flow could be viewed as exogenous.

To arrive at equilibrium flows satisfying Equation
8, a simplistic heuristic algorithm is used. The algo-
rithm begins by specifying an initial condition of the
spatial and temporal distribution of traffic. The most
obvious initialization is to distribute the total origin-
destination traffic demand (assumed to be known)
equally among all route and departure time interval
combinations, thus producing equal values for all cells
of the F matrix. With this initialization, estimated
Equations 2, 4 and 5 are enumerated, through the
sample, to arrive at a new distribution of flows over
routes and departure times. This is illustrated as,

fii = Xk APy E Vi, t. 9)

Where f,; is the five minute flow at time interval ¢
on route j for iteration n (i.e., elements of the F
matrix), Az is an indicator variable that is one if the
departure time (as calculated in Equation 3) falls
within time interval ¢ for traveler k at iteration n, and
zero otherwise, P;;, is the probability of traveler k
selecting route j with prevailing flows for time interval
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t at iteration n, and E is a constant of expansion to
permit the estimation sample to represent the total
origin-destination demand (e.g., if the sample size is
151 and the total vehicle demand is 1510, then E
is 10).

A convergence test is then undertaken to check
whether or not the flow rates predicted by Equation 9
are acceptably close to those used in the demand
calculations (i.e., either initially assumed flow rates or
flow rates from a previous iteration). The convergence
test is,

S lfs =T < V)

where « is the convergence measure. A similar criteria
has been defined by BEN-AKIVA, DE PALMA and
KANAROGLOU,"® and has been empirically proven to
produce satisfactory results.

Finally, if convergence is not achieved in a given
iteration, new flows are used and the process contin-
ues. To arrive at a new set of flows, a smoothing
procedure has been found to provide the quickest
convergence such that,

nl = 075770 + 0.25f%.

(10)

(11)

A similar procedure has been used with success in a
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modified capacity restraint traffic assignment by the
Federal Highway Administration.""

6. SIMULATION EXPERIMENTS

IN ALL simulation experiments, a simplification of the
actual area from which the survey data was collected,
is used. The simplification is that it is assumed that
all traffic on the network connecting the residential
development with downtown State College (see Figure
1) is an outgrowth of this single origin-destination
pair. Of course, in reality, many origin—destination
pairs contribute volume to this street network. Total
traffic demand, used to calculate E in Equation 9, was
estimated from actual ground counts to be 3500 vehi-
cles for the typical two hour period from 7:00 a.m. to
9:00 a.m., a period that covers the majority of work-
trips in the State College area. Thus, using five minute
intervals as previously discussed, the experiments
include equilibrium over three routes and 24 time
intervals.

6.1. Experiment 1: Existing Conditions
(Base Case)

The results of the simulation of existing traffic
conditions (the base case) are presented in Figure 2,
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Fig. 2. Equilibrium traffic flow on (a) the arterial, experiment 1, (b) the rural road, experiment 1, and (c) the expressway, experiment 1.
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a, b and c. This base case includes the vehicle demand,
route characteristics, and the work start and preferred
arrival times as they existed at the time of the com-
muter survey. The results shown in the Figures are a
fairly typical representation of morning traffic peak-
ing in a small metropolitan area.

In interpreting the results of Figure 2, it is impor-
tant to note that when the instantaneous traffic flow
rate exceeds the hourly capacity of the most restrictive
section of the route (represented by the hourly capac-
ity line in the Figures), queues will form and will not
dissipate until some time after the flow rate falls below
capacity. The length of queue can be determined by
estimating the area of the flow rate curve above the
hourly capacity line. The time for queue dissipation
can be estimated by calculating the time needed for
the area below the hourly capacity line and above the
flow rate curve, following a queuing situation, to equal
the area of the flow rate curve above the capacity line.
For illustrative purposes, it is assumed that the re-
strictive capacity occurs at the point of trip origin,
where the temporal distribution is readily computed.
A driver’s choice of departure time from his origin is
therefore considered the same as the arrival time at
the critical section. This is obviously a substantial
simplification since, in reality, the restrictive capacity
takes place at some point along the route.

Using this computational simplification, it is found
that the longest-duration queue on the arterial begins
at 7:37 a.m. and lasts 15 minutes, on the rural road
begins at 7:35 a.m. and lasts 20 minutes and on the
expressway off-ramp begins at 7:33 a.m. and lasts
30 minutes.

In addition to studying queue formation and dissi-
pation, it is interestng to assess traveler welfare im-
pacts. From economic literature on consumer welfare
analysis (SMALL and ROSEN'®)) it is known that, with
the logit route choice model, the total implicit cost of
commuting is,

TIC = 3 [—m 1n[z exp(ij)]]. (12)

Where TIC is the total implicit cost of commuting, A
is the marginal utility of income, and V,; is the flow
dependent route utility as previously defined. The
marginal utility of income is simply equal to the value
of the coefficient associated with the operating cost
variable in the route choice model, but opposite in
sign (WINSTON and MANNERING?®”). Enumeration of
Equation 12 through the sample of 151 travelers (ex-
panded to approximate the total origin-destination
vehicle demand of 3500) yields a total implicit cost of
commuting, for the 7:00 a.m. to 9:00 a.m. morning
peak, of $3,364. This value will be used as a basis for
comparison in subsequent simulation experiments.

6.2. Experiment 2: Reduction of Route
Capacity

This experiment assesses the impact of reducing the
capacity of the arterial by 50% (to 800 vehicles per
hour at the most restrictive section), which is the
equivalent of a lane closure. The total travel demand
is assumed to remain at the same level as in the base
case. The results of the experiment are presented in
Figure 3, a, b and c. As expected, the reduced arterial
capacity results in a diversion of traffic to the two
alternate routes and the peaking characteristics of
traffic flow are less pronounced. Maximum queue
durations are computed to be 24 minutes for the
arterial, 39 minutes for the rural road, and over 1.5
hour for the expressway which has an unfavorable
allocation of green time at the off-ramp intersection
with the rural road.

Under this reduced capacity condition, the loss in
total commuter welfare can be readily computed as
the difference (between experiments 1 and 2) in the
total implicit costs as defined in Equation 12. This
difference in total implicit cost is the well-known
economic concept of compensating variation, or the
amount that would have to be paid to have travelers
as well off, welfare-wise, after the capacity reduction
as they were before the reduction. The welfare cost of
the capacity reduction is computed to be $202 per each
morning peak period, which can accumulate to a sub-
stantial welfare loss, even on this small and relatively
lightly congested network, when one considers off-
peak and afternoon peak costs of capacity reduction.

6.3. Experiment 3: Optimal Signal Timing

An interesting application of our dynamic model is
one that computes optimal signal timing. From an
economic perspective, optimal signal timing is that
timing that provides the highest consumer welfare. In
our case, this translates into the timing that results
in the lowest total implicit cost as defined in Equation
12. The intersection of Fox Hollow Road and the
Route 322 by-pass (rural road and expressway respec-
tively) was chosen for the optimal signal timing ex-
periment (see Figure 1). The intersection at the time
of the commuter survey was a fixed-time signal with:
1) a saturation flow of 1400 vehicles per hour of
effective green for both the rural road and the express-
way off-ramp and 2) a cycle length of 60 seconds with
20 seconds of effective red allocated to the rural road
and 40 seconds to the expressway off-ramp.

The procedure to determine optimal signal timings
is to systematically compute dynamic equilibrium
traffic flows for various cycle lengths and for the range
of effective red allocated to the rural road for each
cycle length. The combination of cycle length and
effective red that produces the lowest total implicit
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Fig. 3. Equilibrium traffic flow on (a) the arterial, experiment 2, (b) the rural road, experiment 2, and (c) the expressway, experiment 2.

cost will constitute optimal signal timing. Illustrations
of effective red allocations and total implicit costs for
80 and 140 second signal cycle lengths are presented
in Figures 4 and 5. Although both figures reveal fluc-
tuations, resulting from algorithm convergence, that
often making it difficult to pinpoint an exact optimal
effective red allocation, the approximate optimal rural
road effective red allocation is 28 seconds for the 80
second cycle and 44 seconds for the 140-second cycle.
The selection of optimal effective red allocation for
various cycle lengths yields the curve in Figure 6. Here
it is seen that even at a 200-second cycle length, which
is beyond practical recommendations, the total im-
plicit cost of commuting continues to decline. This
finding (i.e., the superiority of longer and longer cycle
lengths) is consistent with the results obtained when
using standard accepted signal optimization packages
on the same intersection. It is believed that this is a
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Fig. 4. Total implicit cost of commuting versus the length of
effective red time allocated to the rural road for 80-second cycle
length.
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reflection of the simplistic two-phased, fixed-time na-
ture of the signal being studied.

Although the minimization of total implicit cost is
an exciting and promising approach to optimal traffic
signal timing, the results contained herein must be
viewed as exploratory for two reasons. First, the in-
tersection being evaluated is too simplistic to be of
value to most practical applications. Additional work
on more complex intersections with multi-phase sig-
nals is needed to assess the potential of the approach.
Second, the intersection queuing (see Equation 7) used
in demand model estimation and subsequent equilib-
rium determination does not account for the random-
ness in vehicle arrivals. Thus, future work is needed
to account for random vehicle arrivals so that a precise

comparison between the total implicit cost approach
and currently accepted signal optimization procedures
can be made.

7. SUMMARY AND CONCLUSIONS

THIS PAPER provides a means of determining the
spatial and temporal equilibrium distribution of traffic
flows on a simplified network for home-to-work com-
muter trips. The procedure is based on the behavioral
modeling of individual decisions in response to traffic
congestion. Specifically, a discrete/continuous econo-
metric framework is developed in which travelers’
choice of route and departure time is modeled, and
this is incorporated into an equilibrium framework
from which a variety of traffic simulations can be
undertaken.

The simulation experiments presented herein dem-
onstrate the potential usefulness of the model in eval-
uating capacity restrictions and signal improvements.
It is clear that the temporal considerations incorpo-
rated in this model, and other recently developed
dynamic models that have appeared in the literature,
greatly enhance the traffic analysis process relative to
the traditional static equilibrium assumptions that are
the current mainstay of traffic assignment algorithms.

In terms of future work, a number of important
directions can be identified. First, although the expan-
sion of our approach to multiple origins and destina-
tions is an inherently difficult undertaking, it is ob-
viously needed if widespread use of the model is to be
achieved.  Second, issues of the behavioral model’s
transferability among metropolitan areas must be ad-
dressed to lower the potential cost of model imple-
mentation. Finally, additional work on the optimal
signal timing approach is warranted as previously
discussed.
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